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Abstract

Prompt tuning and prefix tuning are two effec-
tive mechanisms to leverage frozen language
models to perform downstream tasks. Robust-
ness reflects models’ resilience of output under
a change or noise in the input. In this paper,
we analyze the robustness of natural language
models using various tuning methods with re-
spect to a domain shift (i.e. training on a do-
main but evaluating on out-of-domain data).
We apply both prompt tuning and prefix tun-
ing on T5 models for reading comprehension
(i.e. question-answering) and GPT-2 models
for table-to-text generation. Our results demon-
strate significant divergence in domain robust-
ness patterns given two similar prompt tuning
methods under relatively fair experimental set-
tings. We further propose future research direc-
tions to explore and validate the causes of such
differences.

1 Introduction

NLP models have recently achieved outstanding
performances and are thus gained prevalent applica-
tions in real world (Bahdanau et al., 2015; Hu and
Li, 2021; See et al., 2017). With this popularity, it
is important to make sure these models could adapt
well in the dynamic circumstances. More specif-
ically, robustness with respect to domain shifts is
supposed to be considered when developing mod-
els (Ramponi and Plank, 2020; Wang et al., 2019a).
Because the same large pre-trained language mod-
els are often applied to different tasks or fields. It
would be inefficient and impractical if we train the
model with corresponding inputs every time we
apply them to a different domain. We want large
models can be easily reused and adapted to vari-
ous tasks and domains. Improvement on models
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to ensure they are robust against change of inputs
modality and domain has been a hot topic for study
(Wei et al., 2022; Ye et al., 2021).

Figure 1: Architectural difference between prompt tun-
ing and prefix tuning. In prompt tuning, the initial
prompt embedding is directly derived from randomly
initialized words from vocabulary. The parameters in
the prompt embedding are directly updated as we fine-
tune the model for downstream tasks. In prefix tuning,
in addition to having the prompt embedding, the embed-
ding is further reparamterized and activated to form the
prefix embedding. In back-propagation, the pre-trained
model itself is freezed, only allowing the parameters
from the prompt/prefix embeddings to be updated.

With the advance of NLP, a wide range of mech-
anisms have been developed to adjust large pre-
trained language models to downstream tasks. To
avoid the update and storage of language model
parameters, Li and Liang (2021) developed prefix
tuning, which freezes the parameters of language
model, and only optimizes the small continuous
task-specific vector (i.e. the prefix). They apply
prefix tuning on GPT-2 models (Radford et al.,
2019), and find great model performances under
different data settings.

Prompt tuning (Lester et al., 2021) is proposed
as a further simplification of prefix tuning. Simi-
lar to prefix tuning, the pretrained language model
is kept freezed, but this time, prompt tuning di-
rectly applies learnable soft embedding to being
concatenated with the input embedding. With the
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end-to-end employment of prompt tokens, prompt
tuning achieves outperforming results and efficient
model reuse on T5 models (Raffel et al., 2020).

2 Related Works

Language Model fine-tuning is the core procedure
to adapt a pre-trained model to a downstream task.
The essence of fine-tuning is by updating the model
parameters from learning the input-output pair of
a given task and some data. Many recent works
have been focusing on reducing the number of pa-
rameters needed fot a language model to adapt to a
downstream task (thus subsequently reduce compu-
tational and storage needs as well). Houlsby et al.
(2019) proposed a adapter module that achieved su-
perior performance by integrating the transformer
layer with such adapter modules, where fewer up-
dated parameters (compared to model-tuning on
top layers) lead to greater gains. Hambardzumyan
et al. (2021) proposed an adversarial approach to
learn task-specific word embedding, which con-
catenate with the input text to instruct the model
to generate desired outputs. This work is different
from Li and Liang (2021) and Lester et al. (2021)
that its methodology limits the model to produce
only 1-token output, which is mostly useful for
classification tasks. Gao et al. (2021) introduced
prompting for few shot-learning, but their method
is highly dependent on manual prompt engineer-
ing compared our main objective methods, which
learn the soft prompt based on the data. Our works
will focus on prompt tuning and prefix tuning as
they are most flexible in terms of model and task
compatibility.

Domain adaptation has many objectives, but
most of them aim to enable the model to consis-
tently produce desirable performance for the same
task over various domains when the model is ex-
posed to certain domains. Wang et al. (2019b)
and Cao et al. (2020) used adversarial training
paradigm to not only fine-tune a language model
for a downstream task, but also asks the model
to classify the domain that this input belongs to,
making it domain invarient. Xu et al. (2019) pro-
posed multiple auxiliary loss terms to prevent the
model from catastrophic forgetting on its original
domain when it’s fine-tuned on a different domain.
Zhang et al. (2020) demonstrated that augment-
ing pretraining dataset with a certain low-resource
domain would greatly improve the model perfor-
mance later when it’s fine-tuned on the same do-

main. Finally, Talmor and Berant (2019) showed
that by combining training data from multiple do-
mains, the model generalizes better to other do-
mains, and further, by a two-step fine-tuning from
a large out-of-domain dataset to a small in-domain
dataset under the task and input modality, the model
needs less data to achieve a good performance on
the in-domain dataset compared when it is directly
fine-tuned on the in-domain dataset. Our main
focus will be on exploring prompt & prefix tun-
ing’s ability for zero-shot domain adaptation due
to fewer parameter needs. We hypothesize that be-
cause these prompt tuning methods require smaller
amount of parameters, the model has to learn what
is commonly existing (i.e. the same task methodol-
ogy) in data coming from different domains, rather
than domains or data themselves.

3 Experimental Setup

3.1 Datasets and Metrics

For GPT-2 model, we investigate the domain ro-
bustness on Table-to-Text generations. We train the
model on WebNLG (Colin et al., 2016), and test on
DART (Bosc et al., 2016). DART is more complex
and has larger size than WebNLG. DART is open-
domain while WebNLG has only 14 domains. We
evaluate the performance using BLEU (Papineni
et al., 2002) score, which is reported by the offi-
cial evaluation script for WebNLG and DART. We
will also include METEOR (Banerjee and Lavie,
2005) and TER (Snover et al., 2006) score, which
measures the translation accuracy.

The WebNLG (Colin et al., 2016) corpus com-
prises of 25,298 (data, text) pairs and 9,674 sets of
triplets (subject, property, object) describing facts
(entities and relations between them) and the cor-
responding facts in form of natural language texts.
The test set is split into two parts: on one hand, it
contains DBpedia categories that were seen in the
training data; and on the other hand, it consists of
inputs from 5 unseen categories.

DART (Bosc et al., 2016) is a large dataset for
open-domain structured data record to text genera-
tion. It has a similar input format to WebNLG but is
richer and more diverse than WebNLG. DART con-
sists of 82,191 examples across different domains
with hierarchical inputs based on a tree ontology
that transforms a flat table into a tree structure.

For T5 models, we investigate the domain ro-
bustness on question-answering tasks. In our ex-
periments, We train our model on the SQuAD (Ra-



jpurkar et al., 2016) dataset, and test on the DuoRC
(Saha et al., 2018) dataset. The evaluation metric
for T5 is EM/F1 score, which is derived from the
script provided by the MRQA challenge by Fisch
et al. (2019).

SQuAD (Rajpurkar et al., 2016) is a reading com-
prehension dataset, containing 107,785 question-
answer pairs. Questions in this dataset are posed
by crowdworkers from Wikipedia articles, and the
answer to every question is a segment of text from
the corresponding reading passage, meaning the
system will select the answer from all possible
spans. Even though span-based answers are more
constrained, SQuAD dataset still provides us with
diverse questions and answer types.

DuoRC (Saha et al., 2018) is another dataset for
reading comprehension dataset. DuoRC contains
186,089 (question,answer) pairs generated from
a collection of 7680 pairs of movie plots. Every
pair in the collection reflects two versions of the
same movie since they are written by two different
groups of crowdworkers. This makes the answers
less overlapping, different in levels of plot details
and higher requirements for reasoning process.

We also conduct an additional experiment that
aims to address the question whether there are cer-
tain domains that would make the model generalize
better to other domains, and we make full use of
MRQA dataset by considering each of its subset as
representing a domain.

Figure 2: Generalized experimentation setup. To test
the domain robustness of a specific prompt/prefix tun-
ing method, we use the same pre-trained model and a
method to fine-tune on an in-domain training set. Then,
the fine-tuned model is evaluated on in-domain vali-
dation set for in-domain performance and on out-of-
domain test set for out-of-domain performance. All
three datasets share the same task and input formats.

3.2 Methods & Hyperparameters
In our work, we will apply both prompt and prefix
tuning on T5 and GPT-2 models. Our experimen-
tal design spans two dimensions for each model
and tuning method. First, we measure the robust-
ness of tuning with respect to different model sizes,
given the same prompt length. Second, we mea-
sure the robustness of tuning with respect to dif-
ferent prompt lengths, given the same model size.
We train T5 with sizes ranging from small, base
and large, and GPT-2 ranging from medium and
large. Both models are trained with different to-
ken lengths including 1, 5, 10, 20, and 50. The
prompts and prefixes’ parameters are initialized
from vocabulary.

For the T5 model on question-answering, we
trained it with AdaFactor (Shazeer and Stern, 2018)
with a learning rate of 0.001 and a linear learning
rate annealing scheme. In terms of the optimizer,
we disabled scaling the parameter and the relative
step. We used a clip threshold of 1.0, and we did
not have any warm up steps during training. We
run 4 epochs through all the training data in our
experiments. This applies to both prompt tuning
and prefix tuning. We did not perform any hyperpa-
rameter search in our experimental setting and the
given choices are what most people have been us-
ing. We hope that this setting will show us a more
natural and realistic performance of the model.

For the GPT-2 model on table-to-text generation
with prefix tuning, we followed the optimized pa-
rameters provided by Prefix-tuning (Li and Liang,
2021). In particular, we trained it with AdamW op-
timizer (Loshchilov and Hutter, 2019) and a linear
learning rate scheduler according to the Hugging-
Face default setup. The learning rate is 5 · 10 −5.
On the other hand, for prompt tuning, we trained
it with the same hyperparameter set that has been
used for prompt tuning the T5 model. The reason
that we did not use the hyperparameters provided in
prefix-tuning for prompt tuning in this experiment
is due to its poor convengence.

4 Results

4.1 T5 & Question Answering
Our experimentation results for prompt/prefix tun-
ing on T5 model for question-answer task are pro-
vided in Table 1. There are several discoveries that
we have found under our experimentation settings:

First, prefix tuning is better in general for smaller
models. Under the small-sized T5 model, prefix



Configurations In-Domain Out-of-Domain
Prompt Prefix Prompt Prefix

Size # Tkns EM F1 EM F1 EM F1 EM F1
Small 1 17.86 56.88 75.01 84.1 2.27 25.17 29.51 37.9

5 21.52 55.61 75.61 84.32 2.4 21.48 29.85 38.09
10 21.97 57.19 75.41 84.24 3.06 23.6 30.05 38.07
20 27.72 61.08 75.38 84.21 3.53 24.32 30.31 38.18
50 24.34 60.05 75.36 84.21 3.6 24.76 30.45 38.34

Base 1 55.29 79.84 82.54 90.4 30.71 49.74 35.04 44.49
5 47.7 72.44 82.47 90.42 18.79 36.13 34.84 44.26

10 50.09 73.32 82.49 90.29 21.99 39.44 34.98 44.37
20 55.73 75.95 82.69 90.37 25.98 42.38 34.84 44.14
50 49.29 74.23 82.33 90.3 16.06 38.11 34.18 43.8

Large 1 55.65 82.01 86.02 93.21 49.43 63.77 38.24 47.48
5 49.72 78.89 86.18 93.09 43.84 61.08 38.44 47.45

10 46.87 78.33 86.15 93.01 46.77 62.11 38.84 47.63
20 33.67 73.61 86.2 93.17 32.91 56.63 38.44 47.31
50 40.9 76.35 86.33 93.11 38.97 59.32 38.51 47.28

Table 1: T5 results on question-answering task with prompt & prefix tuning. Here, SQuAD dataset was used as the
training set to train the model. In-Domain evaluation metrics are reported based on the validation set of SQuAD
dataset, while Out-of-Domain evaluation metrics are reported based on the test set of DuoRC dataset. All data came
from the MRQA dataset.

tuning performed better in both in-domain valida-
tion dataset and out-of-domain test dataset. Specif-
ically, When the model is fine-tuned with prefix
tuning for this task, the best performance under
small model is 10-20 points higher in terms of F1
score than is fine-tuned with prompt-tuning.

Second, prompt tuning seems to be superior than
prefix tuning as we get larger and larger models. Al-
though prefix tuning has an advantage in F1 score
for in-domain data, prompt tuning has a signifi-
cantly higher F1 score for out-of-domain data, rep-
resenting a relatively stronger ability to adapt to
the new domain. We think this might be caused
by the fact that prefix tuning has more parameters
than prompt tuning, and when the model also gets
larger, this effect is enlarged because the dimen-
sion of the prompt or prefix token also gets larger,
leading to some overfitting to the training domain
for prefix tuning. But this cannot explain the fact
that prefix tuning with only 1 token still performs
poorly in domain adaptation, and more works need
to be done in order to investigate the root cause.

Third, prompt tuning’s token choices are model-
size agnostic with T5 on question answering. It
seems that a token size of 1 always yields the best
performance on out-of-domain data. On the other
hand, this model-size agnostic pattern is not appear-

ing for prefix-tuning, where there does not seem to
have a number of tokens that consistently perform
better on out-of-domain data given a certain model
size.

Fourth, prompt tuning’s performance diverges
significantly when having different number of to-
kens, while prefix tuning’s performance keeps con-
sistently over different number of tokens for the
same-sized model. This shows that determining a
prompt length in prompt tuning is more important
than determining a prefix length in prefix tuning.

As an extended part of this experiment, we
also attempted to address whether certain domains
would make a model generalize to other domains.
Previously, Talmor and Berant (2019) has per-
formed similar experiments to show how well a
model can generalize to various domains given
some particular datasets for training. Their work
shows that zero-shot model performance on out-of-
domain dataset varies moderately given different
training set for fine-tuning the model. Our experi-
ment differs from theirs in the following perspec-
tives: first, we did not use language models that
are specially for QA tasks - whereas they DOCQA
(Clark and Gardner, 2018) and BERTQA (Devlin
et al., 2019) as their models for fine tuning, we
directly used a pretrained T5 model for fine tuning;



Evaluation Training Dataset
Dataset Metric SQUAD NEWSQA SEARCHQA TRIVIAQA HOTPOTQA

SQUAD EM 52.66 54.9 55.3 54.1 54.4
F1 78.55 79.24 79.35 79.24 79.08

NEWSQA EM 17.8 16.2 18.7 18.9 18.6
F1 47.64 46.81 47.91 49.19 49.45

SEARCHQA EM 6.1 6.1 5.5 6 4
F1 21.25 21.24 20.42 21.16 18.9

TRIVIAQA EM 27.6 27.8 28.6 27.1 28.8
F1 55.8 55.88 56.06 56.09 56.37

HOTPOTQA EM 29.7 29.8 29.8 29.7 31.1
F1 56.5 56.48 56.55 56.49 55.58

BIOASQ EM 34.5 34.6 34.5 34.6 34.5
F1 55.3 55.37 55.32 55.35 55.35

DROP EM 15.4 15.5 15.4 15.4 15.6
F1 31.38 31.5 31.39 31.5 31.54

RE EM 44.2 44.5 44.4 44.5 44.5
F1 73.22 73.33 73.21 73.24 73.26

DUORC EM 30.7 30.5 30.4 30.6 30.5
F1 50.26 50.19 50.18 50.24 50.17

Table 2: T5 results on question-answering task with prompt tuning. Different datasets for the same task are used
to train a model one at a time, and then the model is used to make predictions from out-of-distribution evaluation
datasets. We randomly sample 1,000 examples for training, and then make evaluations on 1,000 examples randomly
sampled from the corresponding evaluation dataset. To ensure fairness, a seed is used. The model is T5-base with 1
token for prompt tuning, which has been shown to have fast convergence over small amount of data.

second, while they used model fine-tuning to fine
tune the model for the training dataset, our method
uses prompt tuning, which keeps the pretrained
model parameters freezed, while only updating the
prompt parameters.

Based on Table 2 from our experimentation
setup, we found that data-wise, there does not seem
to exist a domain (in the scope of our dataset) that
would make the model generalize better to other
domains. On the other hand, the prompt trained
on any of the domain-specific dataset has similar
performance on datasets from other domains. This
is indicating that prompt tuning is leading to less
domain overfitting. This is fundamentally differ-
ent from data overfitting that when data overfitting
is happening, the model has a better performance
on the seen training data than unseen validation
data that comes from the same dataset, whereas
when domain overfitting is happening, the model
has a better performance on the domain that is fine-
tuned with, but this performance cannot easily be
achieved when the model is zero-shot evaluated on
this domain when it is fine-tuned on another do-
main, where both domains share exactly the same

task and input & output formats.

4.2 GPT-2 & Table-to-Text Generation
Our experimentation results for prompt/prefix tun-
ing on GPT2 model for table-to-text tasks are pro-
vided in Table 3. There are several discoveries that
we have found under our experimentation settings:

First, prefix tuning is superior in all model
sizes. The BLEU score of prefix tuning on the
training/validation set is 30/15 points higher than
prompt tuning for the base and large models. The
best performance of the prefix tuned GPT2 model
is comparable to the state-of-the-art method, which
reaches around 67 BLEU scores. However, we
observe a significant performance drop in training
and validation set in prefix tuning but not in prompt
tuning. This may be due to overfitting in-domain
data, which also appears in the experiment on ques-
tion answering. On the other hand, prompt tuning
seems to underfit in-domain data. It learns the sen-
tence structure well, but omits some keywords in
the data. The examples in Table 4 show that prompt
tuning misses a part of information in the source.
This may explain why prompt tuning generalizes
well in out-of-domain data.



Configurations In-Domain Out-of-Domain
Prompt Prefix Prompt Prefix

Size # Tkns B(S) B(U) B(S) B(U) B T M B T M
Base 1 0 0 60.69 42.14 0 0.95 0.04 19.45 0.96 0.26

5 30.01 24.16 62.51 45.53 28.32 0.66 0.2 29.02 0.75 0.32
10 31.91 26.18 63.07 43.16 26.6 0.65 0.25 28.09 0.76 0.32
20 37.17 33.8 63.25 44.9 27.91 0.62 0.27 16.45 1.63 0.31
50 38.27 31.07 62.6 44.33 27 0.61 0.26 20.51 1.15 0.32

Large 1 0.69 0.88 64.02 45.91 0.44 0.97 0.04 22.7 1 0.32
5 32.01 28.07 63.75 45.73 19.77 0.7 0.2 30.35 0.71 0.34

10 35.86 32.25 63.97 47.27 20.67 0.8 0.21 30.23 0.71 0.34
20 37.69 33.57 64.44 46.35 27.22 0.67 0.29 29.98 0.71 0.33
50 40.17 36.85 64.23 46.43 24.61 0.79 0.3 31.68 0.65 0.34

Table 3: GPT-2 results on table-to-text generation task with prompt & prefix tuning. Here, webnlg dataset was used
as the training set to train the model. The model is evaluated on the same (i.e. Seen) training set, Unseen validation
set with BLEU score from webnlg as in-domain performance. Then, the model is evaluated on DART dataset for
out-of-domain performance in terms of BLEU, TER, and METEOR score.

Second, there does not seem to have a number of
tokens that consistently perform better. Although a
token size of 20/50 gives the best performance on
in-domain data, the performance on out-of-domain
data could not be anticipated given a token length.
Contrary to prompt tuning on T5, a token of length
1 performs worst in both prompt and prefix tuning
on GPT2. In fact, our experiments show that the
number of tokens needs to be larger than 3 for
prompt tuning on table-to-text tasks.

Third, although prompt tuning performs better
as the model size increases in-domain, it performs
worse in a larger model out-of-domain. This unex-
pected degradation in performance does not appear
in prefix tuning. More works need to be done in
order to investigate the root cause.

Fourth, we obtain similar patterns that prompt
tuning’s performance on GPT2 diverges signifi-
cantly giving different lengths of tokens, while pre-
fix tuning’s performance is relatively stable.

4.3 Common Patterns

The experiments on different lengths of tokens
show that prompt tuning’s performance diverges
when having a different number of tokens. In
contrast, prefix tuning’s performance consistently
keeps over different tokens for the same-sized
model. This shows that the prompt length parame-
ter in prompt tuning is critical.

Furthermore, prefix tuning seems to perform bet-
ter in training and in-domain data. However, it
unexpectedly yields worse results in out-of-domain

data than prompt tuning when the model size grows.
In contrast, prompt tuning performs comparable in
out-of-domain to in-domain as the model size in-
creases. This could be caused by overfitting in
prefix tuning since it uses more parameters than
prompt tuning. Still, both methods outperform fine-
tuning in out-of-domain data.

5 Discussion

In this section, we discuss the advantage of pre-
fix/prompt tuning and address some limitations in
this study.

5.1 Advantages

Prefix and prompt tuning require much less time
and resources to train while still obtaining compara-
ble results to fine-tuning. Both methods only train
on a small subset of parameters and freeze other
parameters, significantly reducing training costs.
Fewer parameters in prompt tuning may general-
ize even better in unseen and out-of-domain data.
For example, its performance on the training and
validation set is very close.

Prefix and prompt tuning are meaningful in real-
life applications. For example, suppose we have
many individual tasks but share the same model
structure. Prefix and prompt tuning could maintain
modularity and save time/space by only adding
and deleting prefix/prompt tokens for each task.
Beyond that, the inference is more efficient with
prefix/prompt settings. Instead of having different
models and calling forward multiple times, we can



Source (Madrid : country : Spain <|endoftext|>, (country, ))
Prefix tuning Madrid is in Spain.

Prompt tuning Madrid is the country of Spain.
Reference Madrid is in the country of Spain.

Source
(Amsterdam_Airport_Schiphol : 5th_runway_SurfaceType :

Asphalt <|endoftext|>, (5th_runway_SurfaceType, ))
Prefix tuning The 5th runway at Amsterdam Airport Schiphol is made of asphalt.

Prompt tuning The 5th runway surface type is Asphalt.
Reference The 5th runway at Amsterdam airport Schiphol has an asphalt surfacing.

Source
(Andrews_County_Airport : elevationAboveTheSeaLevel_(in_metres) :

973.0 <|endoftext|>, (elevationAboveTheSeaLevel_(in_metres), ))
Prefix tuning Andrews County Airport is 973 metres above sea level.

Prompt tuning 973.0 elevation above the sea level is 973.0 metres.
Reference Andrews County Airport is 973 metres above sea level.

Table 4: Examples of generated table-to-text sentences. Red color represents the part of information that is
missing in prompt tuning. Overall, prompt tuning could capture the sentence structure and the majority of the table
information very well. Prefix tuning could capture all information and match the Reference.

do a single forward pass with batches.

5.2 Limitations

We have several limitations in the scope of this re-
port. The direct comparison between prompt and
prefix tuning is not very convincing. The hyperpa-
rameters in prompt tuning are not fine-tuned, but
hyperparameters in prefix tuning experiments are
tuned based on (Li and Liang, 2021). This directly
causes prefix tuning to outperform prompt tuning
in in-domain data. The implementation details of
two methods are also slightly different. The imple-
mentation provided by the Prefix-tuning does not
work on T5, so we modified the codebase, which
may lead to minor discrepancies in implementa-
tions. The implementation of prompt tuning was
not released when we started this project, so we
built our pipeline, which is different from the of-
ficial codebase. Our pretrained T5 model is also
different from the one experimented in Lester et al.
(2021)’s work.

Also, we do not perform ablation tests to ex-
amine the internal representation of prefix/prompt
tokens. This is another exciting topic we want to
explore in the future. For example, if we find some
patterns in the space of prefix/prompt tokens, we
could directly add a prefix/prompt to a pretrained
model when a new task comes. This would allow
us to obtain a model which has comparable per-
formance to fine-tuned models, but with no extra
costs.

6 Conclusion

We conclude that prompt tuning is more robust
in domain-shift tasks. However, the length of
prompt tokens is an important parameter and need
to be tuned in different tasks. Because of time and
resource limitations, our parameters are not fine
tuned and the result is not perfect. We would like
to further optimize the performance in in-domain
data and see whether the score in out-of-domain
also increases and achieves the same level.

On the other hand, prefix tuning does not gen-
eralize as good as prompt tuning in out-of-domain
data, but its performance in in-domain data is close
to the state-of-the-art fine tuning method. Further-
more, the prefix length has small affects in different
tasks and model sizes. Hence, prefix tuning could
reach fine tuning performance with much fewer
parameters, less training time and less fine tuning
process.
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